Search results for "Neutrino Mass"
showing 10 items of 53 documents
Supersymmetric SO(10)-inspired GUTs with sliding scales
2013
We construct lists of supersymmetric models with extended gauge groups at intermediate steps, all of which are inspired by SO(10) unification. We consider three different kinds of setups: (i) the model has exactly one additional intermediate scale with a left-right (LR) symmetric group; (ii) SO(10) is broken to the LR group via an intermediate Pati-Salam scale; and (iii) the LR group is broken into SU(3)(c) X SU(2)(L) X U(1)(R) X U(1)(B-L), before breaking to the standard model (SM) group. We use sets of conditions, which we call the "sliding mechanism," which yield unification with the extended gauge group(s) allowed at arbitrary intermediate energy scales. All models thus can have new gau…
High-precision electron-capture Q value measurement of 111In for electron-neutrino mass determination
2022
A precise determination of the ground state $^{111}$In ($9/2^+$) electron capture to ground state of $^{111}$Cd ($1/2^+$) $Q$ value has been performed utilizing the double Penning trap mass spectrometer, JYFLTRAP. A value of 857.63(17) keV was obtained, which is nearly a factor of 20 more precise than the value extracted from the Atomic Mass Evaluation 2020 (AME2020). The high-precision electron-capture $Q$ value measurement along with the nuclear energy level data of 866.60(6) keV, 864.8(3) keV, 855.6(10) keV, and 853.94(7) keV for $^{111}$Cd was used to determine whether the four states are energetically allowed for a potential ultra-low $Q$-value $\beta^{}$ decay or electron-capture deca…
High-precision measurement of a low Q value for allowed β−-decay of 131I related to neutrino mass determination
2022
The ground-state-to-ground-state β−-decay 131I (7/2+) → 131Xe (3/2+) Q value was determined with high precision utilizing the double Penning trap mass spectrometer JYFLTRAP at the IGISOL facility. The Q value of this β−-decay was found to be Q = 972.25(19) keV through a cyclotron frequency ratio measurement with a relative precision of 1.6 × 10−9. This was realized using the phase-imaging ion-cyclotron-resonance technique. The new Q value is more than 3 times more precise and 2.3σ higher (1.45 keV) than the value extracted from the Atomic Mass Evaluation 2020. Our measurement confirms that the β−-decay to the 9/2+ excited state at 971.22(13) keV in 131Xe is energetically allowed with a Q va…
Neutrino phenomenology and stable dark matter with A4
2011
We present a model based on the A4 non-abelian discrete symmetry leading to a predictive five-parameter neutrino mass matrix and providing a stable dark matter candidate. We found an interesting correlation among the atmospheric and the reactor angles which predicts theta_23 ~ pi/4 for very small reactor angle and deviation from maximal atmospheric mixing for large theta_13. Only normal neutrino mass spectrum is possible and the effective mass entering the neutrinoless double beta decay rate is constrained to be |m_ee| > 4 10^{-4} eV.
Non-standard interactions: Atmospheric versus neutrino factory experiments
2001
We consider the potential of a generic neutrino factory (NUFACT) in probing non-standard neutrino-matter interactions (NSI). We find that the sensitivity to flavour-changing (FC) NSI can be substantially improved with respect to present atmospheric neutrino data, especially at energies higher than approximately 50 GeV, where the effect of the tau mass is small. For example, a 100 GeV NUFACT can probe FC neutrino interactions at the level of few $|\epsilon| < {few} \times 10^{-4}$ at 99 % C.L.
Decoherence in supernova neutrino transformations suppressed by deleptonization
2007
16 pages, 12 figures.-- PACS nrs.: 14.60.Pq; 97.60.Bw.-- ISI Article Identifier: 000251987300100.-- ArXiv pre-print available at: http://arxiv.org/abs/0706.2498
Production, isolation and characterization of radiochemically pure 163Ho samples for the ECHo-project
2018
Abstract Several experiments on the study of the electron neutrino mass are based on high-statistics measurements of the energy spectrum following electron capture of the radionuclide 163Ho. They rely on the availability of large, radiochemically pure samples of 163Ho. Here, we describe the production, separation, characterization, and sample production within the Electron Capture in Holmium-163 (ECHo) project. 163Ho has been produced by thermal neutron activation of enriched, prepurified 162Er targets in the high flux reactor of the Institut Laue-Langevin, Grenoble, France, in irradiations lasting up to 54 days. Irradiated targets were chemically processed by means of extraction chromatogr…
Electroweak breaking and neutrino mass
2017
En este trabajo de tesis hemos analizado algunas de las posibles conexiones entre la generación de la masa de los neutrinos y la nueva física. Para ello, como preámbulo, en el primer capítulo hemos hecho un repaso del Modelo Estándar (SM) de la física de partículas, siendo ésta la descripción más precisa que tenemos de las las interacciones fuertes, débiles y electromagnéticas. Sin embargo, existen algunas interrogantes a las que el SM no ofrece respuesta, por ejemplo, ¿Por qué hay tres familias de quarks y leptones?, ¿Cuál es la explicación a la jerarquía de las masas de los fermiones y a sus ángulos de mezcla?, ¿Cómo explicar la jerarquía entre la escala electrodébil y la escala de Planck…
Review of Particle Physics
2020
The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 2,143 new measurements from 709 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, …
Neutrino masses and mixing: a flavour symmetry roadmap
2012
Over the last ten years tri-bimaximal mixing has played an important role in modeling the flavour problem. We give a short review of the status of flavour symmetry models of neutrino mixing. We concentrate on non-Abelian discrete symmetries, which provide a simple way to account for the TBM pattern. We discuss phenomenological implications such as neutrinoless double beta decay, lepton flavour violation as well as theoretical aspects such as the possibility to explain quarks and leptons within a common framework, such as grand unified models